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Fate of quasiparticles in the superconducting state
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Quasiparticle properties in the superconducting state are masked by the superfluid and are not directly accessible
to infrared spectroscopy. We show how one can use a Kramers–Kronig transformation to separate the quasiparticle
from superfluid response and extract intrinsic quasiparticle properties in the superconducting state. We also
address the issue of a narrow quasiparticle peak observed in microwave measurements, and demonstrate how it
can be combined with infrared measurements to obtain a unified picture of electrodynamic properties of cuprate
superconductors.
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I. INTRODUCTION

Infrared spectroscopy has in the past several decades
become one of the premier experimental tools in condensed
matter physics [1,2]. Thanks to its versatility, it has been
successfully applied to essentially all types of condensed mat-
ter systems, such as superconductors, topological insulators,
graphene, etc. In particular, in high-Tc cuprate superconduc-
tors, infrared based techniques have been extensively used to
probe a variety of unusual and yet unresolved issues concern-
ing their unconventional pairing state [3]. In recent years a
number of attempts has been made to elucidate the properties
of quasiparticles and their relaxation in the cuprates [4,5].
These attempts are based on the so-called extended-Drude
model, which allows both the quasiparticles’ scattering rate
and their effective mass to acquire frequency dependence.
These two quantities can be straightforwardly obtained from
the complex optical conductivity σ̃ (ω) = σ1(ω) + iσ2(ω) as
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where the plasma frequency ω2
p = 4πe2n/mb is usually

obtained from the integration of σ1(ω) up to the frequency
of the onset of interband absorption:

ω2
p = 8

∫ �

0+
σ1(ω)dω. (3)

Equations (1) and (2) are the basis of a so-called one-
component approach [6] for the interpretation of optical
properties, which assumes the existence of a single type
of charge carrier in the system. Closely related quantities
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are the optical self-energy �̃opt(ω) [7] and memory function
M̃(ω) [4,8] defined as
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As an example, in Fig. 1 we display the real and imaginary parts
of the memory function M̃(ω), as well as the effective mass
m∗(ω)/mb for optimally doped Bi2Sr2CaCu2O8+δ (Bi2212)
with Tc = 92 K [9], in both the normal and superconducting
states. Application of Eqs. (1), (2), and (4) to the data in
the superconducting state is highly problematic, even though
it has been routinely done. Namely, in the superconducting
state normal fluid coexists with the superfluid, and the
one-component assumption is clearly violated. As was most
recently pointed out by Homes et al. [5] this procedure cannot
be used to make any reliable statements about quasiparticle
properties in the superconducting state. In the superconducting
state the response at microwave and far-infrared frequencies is
dominated by the superfluid, causing σ2(ω) � σ1(ω),1 and it
follows from Eq. (1) that 1/τ (ω) = M2(ω) ∼ σ1/σ

2
2 acquires

small values (see Fig. 1). Similarly, indiscriminate application
of Eq. (2) to the optical conductivity in the superconducting
state will result in m∗(ω)/mb ∼ 1/(σ2ω) which decreases
when the superfluid forms, and σ2(ω) increases (see Fig. 1).

In this work we show how to circumvent this problem, and
access intrinsic quasiparticle properties in the superconducting
state. The procedure expands the range of applicability of
the one-component approach, and further extends the power
of infrared spectroscopy. Our procedure is based on the
Kramers-Kronig transformation of the optical conductivity.
In the next section (Sec. II) we first present the formalism in
detail. In Sec. III we apply it to model data, which serves

1In the cuprates, the superfluid density is not as high as in
conventional supercondoctors, resulting in σ2(ω) > σ1(ω) instead of
σ2(ω) � σ1(ω). See for example Fig. 4.
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FIG. 1. (Color online) Extended-Drude analysis of optimally
doped Bi2212 with Tc = 92 K. (a) Real part of memory function
M1(ω) obtained from Eq. (4). (b) Imaginary part of memory function
M2(ω) from Eq. (4). (c) Quasiparticle effective mass m∗(ω)/mb

calculated from Eq. (2). The values of plasma frequency ωp used
for each temperature are shown in Fig. 4(c).

to illustrate the main idea and demonstrate its usefulness.
The procedure is then applied to existing infrared data on
optimally doped high-Tc superconductor Bi2212 with Tc =
92 K (Sec. IV). We present and discuss the quasiparticle
properties obtained below Tc. In this section we also address
the issue of a narrow quasiparticle peak that has been observed
in microwave spectroscopy, and show how it can be combined
with infrared data to obtain a unified and self-consistent picture
of electrodynamic properties of Bi2212. Finally, in Sec. V we
summarize the most important findings made possible by the
procedure.

II. KRAMERS–KRONIG APPROACH

In this section we present the details of our procedure.
The approach is based on the Kramers-Kronig transformation
of optical conductivity, which we introduced previously to
extract the superfluid density from infrared data [10]. In the
superconducting state the real part of optical conductivity can
be written as

σ SC
1 (ω) = ρsδ(ω) + σ

qp

1 (ω), (5)

where the first term on the right-hand side is the super-
conducting contribution and the second is the quasiparticle
contribution. The corresponding imaginary part of σ SC

1 (ω)
follows from a Kramers-Kronig relation:

σ SC
2 (ω) = ρs

1

ω
+ σ

qp

2 (ω), (6)

where ρs = ω2
s is the superfluid density or stiffness, and ωs

is the superconducting plasma frequency. The Dirac delta
function in σ SC

1 (ω) is not accessible in optical data, which
typically start at several meV. However, the 1/ω term in
σ SC

2 (ω) is mixed up with σ
qp

2 (ω) and contributes to both
1/τ (ω) and m∗(ω)/mb [Eqs. (1) and (2)]. To determine the
intrinsic quasiparticle properties we must separate the two
terms in Eq. (6). To that end we employ a Kramers-Kronig
transformation on σ

qp

1 (ω):
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We emphasize that this step is completely model-independent;
no a priori assumptions are made about the form of quasi-
particle conductivity. Once σ

qp

2 (ω) is calculated from Eq. (7),
one can calculate the intrinsic scattering rate and effective
mass in the superconducting state [Eqs. (1) and (2)] using the
Kramers-Kronig-corrected σ

qp

2 (ω), instead of σ SC
2 (ω). Note

that σ SC
1 (ω) does not need to be corrected, as the delta function

[Eq. (5)] is not accessible to optical experiments. Using the
procedure described above, we can also calculate the superfluid
density from Eq. (6), as was done before [10]:

ρs = ω2
s = ω

(
σ SC

2 (ω) − σ
qp

2 (ω)
)
. (8)

III. MODEL CALCULATIONS

To test the procedure and to demonstrate its usefulness in
this section we perform the calculations on model data. We
adopt a Drude model for the normal state, with the width
of peak equal to 40 cm−1. A BCS model for an s-wave
superconductor is used in the superconducting state, and it
also includes a quasiparticle peak inside the superconducting
gap. The critical temperature was set at Tc = 90 K, and
the corresponding T = 0 energy gap is 2
 = 220 cm−1

(27.3 meV). Real and imaginary parts of σ̃ (ω) are shown
with thick lines at several temperatures in Figs. 2(a) and 2(b)
respectively. In the superconducting state a characteristic
suppression of σ1(ω) is observed below the gap. The spectral
weight removed from these frequencies is transferred to the
delta function at zero frequency [Eq. (5)]. The values of plasma
frequency are calculated from Eq. (3) and displayed in Fig. 2(c)
with red circles. Note that in Eq. (3) the integral starts from
0+, which emphasizes the fact that in the superconducting state
only the quasiparticle contribution should be counted towards
ωp. The upper limit of integration was set to 2000 cm−1.
Unlike σ1(ω), σ2(ω) is dominated by a characteristic 1/ω

response of the superfluid [Eq. (6)]. We also note that the
absolute values of σ2(ω) are at least an order of magnitude
larger than σ1(ω).

We now apply the procedure outlined in the previous sec-
tion. In Fig. 2(b) with thin lines we display σ

qp

2 (ω) calculated
from Eq. (7). We note that these Kramers-Kronig-corrected
curves are not dominated by 1/ω superfluid response, but
instead display a broad peak at finite frequencies, similar to
the one seen at 90 K. The removal of superfluid response also
reveals pronounced structure at the gap frequency, which is
not observable in σ SC

2 (ω) (before the correction).
In Fig. 3 we display with blue lines the results for the

real (top panels) and imaginary (bottom panels) parts of
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FIG. 2. (Color online) (a) Real part of the optical conductivity
σ1(ω) of a BCS model with Tc = 90 K. (b) Imaginary part of the
optical conductivity σ2(ω). Thick lines represent the model function,
whereas thin lines of the same color represent Kramers-Kronig-
corrected σ

qp

2 (ω). (c) Temperature dependence of plasma frequency
ωp , superconducting plasma frequency ωs , and the total plasma
frequency (ω2

p + ω2
s )1/2.

the memory function M̃(ω) from Eq. (4). In the normal
state both parts display constant values, typical of the Drude
model. On the other hand, in the superconducting state,
M1(ω) is suppressed at higher frequencies, but does not show

FIG. 3. (Color online) Real and imaginary parts of the memory
function, M1(ω) and M2(ω), for the model shown in Fig. 2. The results
are shown before (blue lines) and after (red lines) Kramers-Kronig
correction.

any characteristic features at the gap, because the response
is dominated by the superfluid. The imaginary part M2(ω)
displays characteristic suppression, especially below the gap.
In the same figure we also plot with red lines the results for
the memory function obtained with Kramers-Kronig-corrected
σ

qp

2 (ω). Expectedly, in the normal state the memory function
is the same as before. However, in the superconducting
state, the removal of the superfluid contribution reveals a
very pronounced structure at the gap frequency in M1(ω).
The imaginary part M2(ω) also displays structure at the gap
frequency, but more importantly the suppression below the gap
is much smaller than before. Above the gap M2(ω) is enhanced
compared to the normal state.

In Fig. 2(c) we display the temperature dependence of the
plasma frequency ωp (red circles) obtained from Eq. (3), and
the superfluid density (blue squares) obtained from Eq. (8).
As discussed above, the spectral weight removed from finite
frequencies is transferred to the delta function at zero energy,
but the total spectral weight must be conserved. This is indeed
confirmed by Fig. 2(c) where the total (i.e., combined) plasma
frequency (ω2

p + ω2
s )1/2 is shown with green triangles and is

constant within the error bars of numerical calculations. Note
that the application of Eq. (8) to the normal state data may
result in a small but finite value of superconducting plasma
frequency. This is due to numerical errors, and does not imply
the existence of superfluid in the normal state, above Tc.

IV. Bi2212

Before applying the procedure to Bi2212, we must address
the issue of a very narrow quasiparticle peak that has been
observed in microwave measurements [11–13]. Its width is
typically a few meV [11–13], which is outside the frequency
window of typical infrared measurements. The existence of
this quasiparticle peak is usually ignored during analysis of
infrared data, as it does not contain a lot of spectral weight
and does not significantly affect the calculation of normal
state plasma frequency [Eq. (3)]. However, this narrow peak
can produce a significant 1/ω contribution to σ2(ω), which
mimics the superfluid response. If we want to calculate the
London penetration depth or the superfluid stiffness, it must
be separated from the superconducting contribution. We show
below that in the case of optimally doped Bi2212 this can lead
to correction of superconducting plasma frequency ωs by as
much as 40%.

In order to perform the integration in Eq. (7) optical
conductivity data must be extended down to zero frequency.
It was recently shown that because of the Kramers-Kronig
relations between σ1(ω) and σ2(ω) one can calculate the
spectral weight that is located below the lowest measured
frequency [14]. However, the optical functions themselves
[σ1(ω) and σ2(ω)] cannot be retrieved without making some
model assumptions about the optical spectrum. Here we
will make the reasonable assumption that the quasiparticle
contribution can be approximated with the Drude model, and
we combine it with the microwave data on Bi2212. Figure 4
displays σ1(ω) from infrared as well as the microwave values
at 34.7 GHz 	 1.15 cm−1 (the values at 14.4 and 24.6 GHz
are similar) [11]. We now fit the complex conductivity σ̃ (ω)
simultaneously with microwave data, imposing the constraint
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FIG. 4. (Color online) (a) Real part of the optical conductivity
σ1(ω) of optimally doped Bi2212 with Tc = 92 K. Thick lines
represent the experimental data, thin dashed lines of the same color
represent Drude extrapolations, and the circles represent microwave
data at 34.7 GHz [11]. (b) Imaginary part of the optical conductivity
σ2(ω). Thick lines represent the experimental data, thin dashed lines of
the same color represent Drude extrapolations, and thin lines represent
Kramers-Kronig-corrected σ

qp

2 (ω). (c) Temperature dependence of
plasma frequency ωp , superconducting plasma frequency ωs , and
the total plasma frequency (ω2

p + ω2
s )1/2. Open squares represent the

values of superconducting plasma frequency ωs obtained without
Kramers-Kronig correction.

that the total spectral weight in the superconducting state is
conserved.2 In Fig. 4 the infrared data is shown with thick
lines, and model fits with dotted lines. The microwave values
for the corresponding temperatures are shown with the circles
of the same color.

With optical conductivity extended down to zero frequency
we can now apply the procedure to Bi2212 and the results are
shown in Fig. 4(b) with thin lines (only below Tc). We can
see that instead of a characteristic 1/ω divergence, the spectra
display a finite frequency peak, characteristic of quasiparticle
response. The values of normal state plasma frequency ωp and
superconducting plasma frequency ωs are shown in Fig. 4(c)
with red circles and blue squares, respectively. These values
are comparable with those previously reported [15]. The total
plasma frequency (ω2

p + ω2
s )1/2 (green triangles) is within

1.5% of the normal state value. Also shown with empty
squares is the superconducting plasma frequency calculated

2It was shown by Molegraaf et al. [16] that a fraction of spectral
weight is transferred from the visible to the infrared spectral
range. Note however that this effect is below the error bars of our
calculations.

FIG. 5. (Color online) Real and imaginary parts of the memory
function, M1(ω) (top panels) and M2(ω) (middle panels), as well as
quasiparticle effective mass m∗/mb (bottom panels) for the Bi2212
data shown in Fig. 4. The results are shown before (blue lines) and
after (red lines) Kramers-Kronig correction.

using uncorrected σ2(ω), which can be as much as 40% higher
than the corrected one.

Once the superfluid contribution is removed from σ̃ (ω), one
can calculate intrinsic quasiparticle properties [Eqs. (1), (2),
and (4)]. Figure 5 displays M1(ω) (top panels), M2(ω) =
1/τ (ω) (middle panels), and effective mass m∗(ω)/mb (bottom
panels), both before (blue lines) and after Kramers-Kronig cor-
rections (red lines). Several selected temperatures are shown,
in both the normal (100 K) and superconducting states (80, 50,
and 10 K). Expectedly, optical functions in the normal state are
the same before and after Kramers-Kronig correction. In the
superconducting state, on the other hand, the corrections are
significant and cannot be neglected. We note that even though
the plasma frequency ωp decerases in the superconducting
state [Fig. 4(c)], all optical functions are enhanced compared
to their uncorrected values. In addition, the structure at around
700 cm−1 is much more pronounced in all corrected spectra.
The reason is the removal of superconducting contribution
from σ2(ω), which exposes the true quasiparticle properties.

In Fig. 6 we display the temperature dependence of quasi-
particle scattering rate and effective mass, both before (blue
circles) and after (red circles) Kramers-Kronig correction.
The values of scattering rate were extracted as the average
values at around 30 cm−1. On the other hand the values of the
mass were obtained from the linear fits of the low-frequency
M1(ω) spectra [Eq. (4)]. This method has proven to be more
reliable than a simple extrapolation, in particular in the normal
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(a)

(b)

FIG. 6. (Color online) (a) Temperature dependence of scattering
rate 1/τ (ω = 30 cm−1) before and after Kramers-Kronig correction.
(b) Temperature dependence of effective mass m∗(ω)/mb before
and after Kramers-Kronig correction. These values are extracted as
explained in the text. The effective mass without Kramers-Kronig
correction appears to decrease in the superconducting state. However,
with Kramers-Kronig correction the effective mass continues to
increase below Tc, which indicates that the quasiparticles are more
correlated than in the normal state.

state. The temperature dependence of scattering rate is similar
before and after the correction, however the suppression of
1/τ (ω) below Tc is much less pronounced after the correction.
On the other hand, the effective mass reveals dramatically
different behavior. Before Kramers-Kronig correction the
mass decreases in the superconducting state, as anticipated
above. However, once the superfluid and the true quasiparticle
properties are exposed, we can see that the effective mass
actually increases as temperature decreases below Tc. This

indicates that the correlations are getting stronger in the
superconducting state.

V. SUMMARY

We presented a way of calculating intrinsic quasiparticle
properties, such as memory function and effective mass, in
the superconducting state. The procedure allows access to
the quasiparticle properties that were previously inaccessible
to infrared spectroscopy. The method was first tested on
model data, and then applied to infrared data on optimally
doped Bi2212. The calculations have revealed that the intrinsic
quasiparticle scattering rate and effective mass are enhanced
in the superconducting state. In particular, the effective mass
increases below Tc compared with the normal state values. This
indicates that thermally excited quasiparticle in the supercon-
ducting state are more correlated than in the normal state.

We expect the method described here to be a useful tool for
infrared spectroscopy, which will allow quasiparticle proper-
ties to be studied in the superconducting state. In particular,
there are several issues in the cuprates that can be immediately
addressed using this procedure. Scaling analysis [4,5] can now
be extended below Tc, and the question of Fermi vs non-Fermi
liquid quasiparticles can be studied. Another important issue
is the controversy regarding the doping dependence of the
quasiparticle effective mass. Namely it was recently shown
using quantum oscillations [17] that the quasiparticle effective
mass in YBa2Cu3O6+x in the superconducting state diverges
as doping is reduced. This finding is in apparent contradiction
with previous infrared measurements [18]. Using Hall data to
discriminate between carrier density n and effective mass m∗
contributions to infrared spectral weight, Padilla et al. [18]
found that the effective mass in both YBa2Cu3O6+x and
La2−xSrxCuO4 was constant across the phase diagram. On
the other hand, by fitting a strong-coupling expressions in
the normal state, van Heumen et al. [19] arrived at a factor
of 2 decrease of the mass enhancement factor when the
doping is increased from 0.1 to 0.21 holes per CuO2 unit, in
agreement with the behavior predicted from dynamical mean
field theory [20]. Using the procedure outlined in this paper
one can now access quasiparticle effective mass below Tc and
address this important issue in the zero-temperature limit.
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